Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The ability of organisms to effectively respond to challenges is critical for survival. We investigated how an acute stressor affected corticosterone, mitochondrial function, and DNA oxidative damage in a wild population of Leach's storm‐petrels (Hydrobates leucorhous). We conducted a standardized 20‐min handling procedure on storm‐petrel chicks and collected baseline and post‐handling blood samples. We measured plasma corticosterone and red blood cell DNA oxidative damage levels through the detection of a mutated DNA base 8‐Hydroxy‐2'‐deoxyguanosine (8‐OHdG). In addition, we quantified six measures of mitochondrial aerobic metabolism from red blood cells. Overall, the handling stressor increased plasma corticosterone levels and decreased mitochondrial efficiency to produce ATP. Although the increase in corticosterone was inversely related to the change in DNA oxidative damage, the decrease in mitochondrial efficiency was positively correlated with the change in DNA oxidative damage. Thus, over an acute stress response, individuals who had the largest increase in corticosterone also had the least amount of oxidative damage. In addition, individuals who prioritized ATP production during the acute stress also showed higher levels of oxidative damage. This work highlights the complex pathways by which corticosterone and mitochondrial efficiency affect oxidative damage during acute stress, providing new insights into the trade‐offs underlying physiological responses in wild animals.more » « lessFree, publicly-accessible full text available March 24, 2026
-
Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony’s lifespan.more » « less
An official website of the United States government
